Fluid Measurements

The Wind Tunnel

Rotation Labs

- You may have to do a lab before you get the appropriate lecture
- What should you do?
 - Online notes
 - Online lecture videos
 - Pre-lab
 - Don't be surprised if we tell you to look at something that is linked to the web site

Cayley

http://www.ctie.monash.edu.au/hargrave/images/cayley.mov

Cayley's Whirling Arm

- Cayley did this in 1804, and built and flew an unmanned glider with wing area of 200 sq. ft.
- What was Cayley trying to measure?
- Any issues with his whirling arm? Does it mimic what a real glider "sees", in terms of fluid flow?

Airfoil in smoke tunnel

What about cars in tunnels?

http://stopbuyingrotas.files.wordpress.com/2008/10/voltex.jpg

Car testing

- What needs to be there to make it like a real car driving on a road?
- What kinds of things would you want to measure?
- Any comments about the tunnel itself?

Rolling Road Wind Tunnel

http://www.wired.com/cars/coolwheels/magazine/15-10/pl_motor

Less expensive to do scaled models

- What do we have to do in order to test scaled models?
 - Geometry scales
 - Paths of fluid particles look the same, velocity of fluid particles scales
 - Forces scale

Called similarity (geometric, kinematic, dynamic)

– More in a bit...

Rockets in wind tunnels

- Think of your first flight lab out in the gravel pit
- What would you liked to have tested in a wind tunnel?

Mars Curiosity parachute

http://www.cleveland.com/science/index.ssf/2012/07/wind_tunnel_testing_at_clevela.html http://www.super-collider.com/styrofoam/wp-content/uploads/2012/08/parachute.jpg

Other examples

http://images.motorcycle-usa.com/PhotoGallerys/wind-tunnel-02.jpg http://history.nasa.gov/SP-440/ch4-3.htm

Wind Tunnel

 Ground-based experimental facility designed to produce flow of gases (often air) to simulate natural flows occurring around a vehicle or other object

These fluid flows cause forces

- Commonly used for flight vehicles (airplanes, jets, rockets, space vehicles)
- Many different types of tunnels, depending on application (low-speed, supersonic, hypersonic, ice testing, spin testing, tunnels for buildings, bridges, etc)

Objectives of this lab

- "Demonstrate the safe start-up and shut-down sequence for the wind tunnel."
- "Set and verify the wind speed in the wind tunnel."
- "Compare measured drag forces on standard shapes in a flow field with literature values."
- "Model and Measure the drag and lift forces on the rocket in various orientations in a flow field."
- "Calibrate the Pitot sensor in the rocket nose cone."

Measurements

- Given those objectives, what do you think we'll be measuring?
- "Set and verify the wind speed in the wind tunnel."
- "Compare measured drag forces on standard shapes in a flow field with literature values."
- "Model and Measure the drag and lift forces on the rocket in various orientations in a flow field."
- "Calibrate the Pitot sensor in the rocket nose cone."

Why do we need experimental data?

- Can't we just do computational fluid dynamics to solve for everything we need?
 - CFD solutions must be validated. How do we do that?
 - CFD doesn't work well for everything
 - Flow separation, some fluid-structures interactions
 - In the past, CFD took too long to run
 - For flight vehicles, it's a really good idea to get wind tunnel data before you actually fly
 - "Tunnel tests first, free-flight tests later, is the proper order of things." –NASA (from "Wind Tunnels of NASA")
 - "We validate the designs," Wendy Lacy, Boeing test engineer

Low-speed wind tunnel schematic

http://www.thefullwiki.org/Subsonic_and_transonic_wind_tunnel

HMC Wind Tunnel

Prof. Jenn Rossmann's tunnel 1' x 1' test section, 140 mph

Note: open door to outside before operating!

Low-speed wind tunnel

- M = Mach number = velocity/speed of sound
- For M < 0.3, density can be taken as constant (incompressible fluid)
- M=0.3 is about 230 mph at sea level
 What does that say about our 140 mph tunnel?
- At steady-state operation, assuming uniform velocity across cross-section, conservation of mass is:
- $\rho_1 A_1 V_1 = \rho_2 A_2 V_2 = \dot{m}$ (mass flow rate)

•
$$V_2 = \frac{A_1}{A_2} V_1$$

Bernoulli's Eqn

- $P_1 + \rho \frac{{V_1}^2}{2} = P_2 + \rho \frac{{V_2}^2}{2}$ = constant along a streamline
 - Assumed friction is negligible, gravity negligible, steady flow, incompressible fluid, flow is along a streamline
- We can derive this from conservation of momentum or conservation of energy

Operation of wind tunnel

 Although we need to be careful when using Bernoulli's eqn because of restrictive assumptions, we can use it to gain some insight

•
$$V_2 = \sqrt{\frac{2(P_1 - P_2)}{\rho(1 - (\frac{A_2}{A_1})^2)}}$$

- Area ratio of wind tunnel is known, so we vary the pressure difference to get our desired test section velocity
- How do we vary the pressure difference in the tunnel?

Aerodynamic Forces

- In fluids, we have pressure (normal) forces and forces due to shear stress
- Often we want to determine the resultant of those forces acting on a body
 - Could be useful to know these for a rocket, for example
- Can integrate the pressure and shear stress distribution on a surface

Pressure and velocity on an airfoil

Pressure contours

Mach number contours

M

http://www.grc.nasa.gov/WWW/wind/valid/raetaf/raetaf04/raetaf04.html

Forces: Lift and Drag

http://www.free-online-private-pilot-ground-school.com/aerodynamics.html

Also Normal and Axial Forces

- Lift Force is often defined as perpendicular to relative wind
- Normal Force is defined as perpendicular to some body axis
- Often, for rockets, the normal force is called the "Lift Force" and the axial force is called the "Drag Force"
 - Makes trajectory modeling clearer if we use fixed reference frame on the vehicle (local frame)

Force Balance: the heart of a wind tunnel

- Rather than measuring pressure and wall shear stress and then integrating, in E80 we measure forces on our models (good balances measure moments as well)
- Instruments often measure a deflection or strain, produce a voltage, and relate that to force
 - Strain gages
 - Linear variable differential transformers (LVDT)

Force Coefficients

- $F_L = \text{lift} = \frac{1}{2}\rho V^2 A C_L$ - Where $\rho = \text{free stream density}$ V = free stream velocity A = reference area $C_L = \text{lift coefficient}$
- $F_D = \text{drag} = \frac{1}{2}\rho V^2 A C_D$ - Where $C_D = \text{drag coefficient}$
- We're going to experimentally determine the lift and drag coefficients as part of this lab
 - Measure forces
 - Measure flow velocity

Force Measurement Linear variable differential transformers (LVDT)

http://www.macrosensors.com/lvdt tutorial.html

http://www.singer-instruments.com/sites/default/files/documents/products/Low-Range-Force-Sensors-F-and-FD-series.pdf

Sting Balance

- Note: Tare Forces (from the Arabic "tarha" meaning "deduction") will act on the sting
- Random historical fact: early models were suspended from thin wires; unfortunately, drag on the wires sometimes exceeded model drag by a factor of 10!

Velocity Measurements

- Pitot-static tube
- MPX53DP differential pressure sensor

 Piezoresistive pressure sensor.
 Pressure causes resistance change in silicon diaphragm, output as voltage

Velocity measurement Pitot-static tube

- Stagnation, or total, pressure, P_0
 - Pressure of the gas when the fluid velocity is zero.
- Static pressure, P
 - what you probably think of when you think of pressure
- $V = \sqrt{\frac{2(P_0 P)}{\rho}}$ (this is Bernoulli's eqn again)

– What kind of pressure sensor shall we use?

 Where on the rocket will we get a stagnation point? Where on the rocket should we measure static pressure?

Pitot Tube Static Port

Figure 4. Static pressure errors due to static port hole placement.

http://search.asee.org/search/fetch;jsessionid=459m5p7k76jr7?url=file%3A%2F%2Flocalhost%2FE%3A%2Fsearch%2Fconfer ence%2F17%2FAC%25202008Full522.pdf&index=conference_papers&space=129746797203605791716676178&type=applic ation%2Fpdf&charset=

From Prof. Spjut's Op amps lecture

What Does It Do?

- What does the first voltage divider do?
- Can you find the unity gain buffer?
- Where is the instrumentation amp?
- Can you find the modified difference amp?
- What are G and K?
- Don't use a circuit you don't understand.

Similarity and Dimensional Analysis

- Similarity: How to make sure our scale models in the tunnel simulate our real-life vehicle
 - geometric, kinematic, and dynamic
- Dimensional Analysis: Method for reducing the number and complexity of experimental variables that affect a given physical phenomenon
 - Helps us be more efficient, keeps us from running redundant experiments, helps with insight
 - Will explain where our force coefficients came from

Similarity

- Geometric similarity: all body dimensions in all three coordinates have the same linear scale ratio
- Kinematic similarity: same length scale ratio and same time scale ratio (this means the velocity scale ratio will be the same)
- Dynamic similarity: same length scale, time scale, and force (or mass) scale ratios
 - Means that forces are in the same ratio and have equivalent directions between the real thing and scaled model

Similarity

- To get complete similarity for a general flow field, we need to have geometric, kinematic, and dynamic similarity
- Reynolds number, Re, governs this for the type of fluid flow we are interested in for E80

•
$$Re = \frac{\rho VL}{\mu}$$
 (dimensionless)

- L = characteristic length scale
- $\mu =$ fluid viscosity

Dimensional Analysis

- We want to determine drag force on our sphere
- We think that F_D=f(length-scale, velocity, density, viscosity)
 - Why both density and viscosity? Can change fluid, also can change temperature
- We could run experiments that vary those 4 parameters, measure drag force, then extract a functional relationship

Dimensional Analysis

- Let's not do it that way (costly, could be difficult, and it turns out that not all of the combinations we could run are independent)
- DA gives us the number and form of independent dimensionless parameters which govern our physical phenomenon

- How? Buckingham Pi (you have seen this in E72)

Coefficient of Drag

Cd of spheres as f(Re)

Curve (1): Stokes' theory, eqn. (6.10); curve (2): Oscen's theory, eqn. (6.13)

100000<Re<1E6 3d on left, 2d on right

http://www.uh.edu/engines/epi1529.htm http://www.aerospaceweb.org/question/aerodynamics/drag/drag-shapes.jpg

Aero characteristics for NACA 4421 airfoil

Accodynamic characteristics of the NACA 4421 airfoil section, 24-inch chord,

What area to use in force coeffs?

- Spheres?
- Airfoils?
- Rockets?
- Foreshadowing
 - How does OpenRocket use these?
 - RockSim?

Implications beyond E80

- Lowered drag coefficients for vehicles
 - Aviation efficiency
 - Fuel costs have been driving this (we see big leaps in drag reduction when fuel price increases)
 - Car efficiency
 - Toyota Prius: drag coefficient of 0.25
 - Mercedes G Class: drag coefficient of 0.53

http://ecomodder.com/wiki/index.php/Veh icle_Coefficient_of_Drag_List